

An Grúpa Optaice Feidhmí

Simple Physics for Better Vision

Chris Dainty, NUI Galway

Erlangen 11th June 2012

➤The aberrated eye

Adaptive optics and "super-vision"

Lens replacement in cataract surgery

➢ Modeling the eye

➢ Future for improved vision

Anatomy & Optics of the Eye

Corneal Topography

Measures the topography of the anterior cornea, which we use in our eye model The corneal map is a result of Hartmann test: imaging LEDs after reflection from the cornea

Total Ocular Wavefront

Measures the ocular wavefront emerging from the eye on axis, which we use in our eye model. The wavefront map is obtained by a Shack-Hartmann wavefront sensor

Biomed Optics Express 3 240-258 (2012)

Isoplanatic Patch

Type of Aberration Matters

Adaptive Optics

Adaptive Optics Visual Simulator

Is "Super-vision" practical ?

Cataract Surgery

- Most frequently performed surgical procedure, >14M operations per year, number growing due to increased life expectancy
- ➤ Cataractous lens removed, plastic intraocular lens (IOL) inserted through ≈2mm incision.
- Optical outcomes excellent (typically 75% with +/-0.5D) in normal eyes, but lower in unusual eyes, e.g. those after LASIK.

Leading cause of blindness in developing countries, yet curable by relatively simple and safe surgery.

Every number on this figure is incorrect !

Current Methods (example)

- ➤ Measure "length" I of eye
- Measure "power" K of cornea
- > Use an empirical formula with a regression parameter A

P = A - 2.5l - 0.9K

P is the power of the IOL

Optical Modeling

The goal is to reconstruct the optical system of the eye.

Instruments:

- LensStar (Optical Low-Coherence Reflectometry)
 - measures intra-ocular distances
- iDesign (Corneal topographer and wavefront sensor)

Methods:

- Reverse Ray-Tracing
- Wavefront Tomography

Intra-Ocular Distances

LENSTAR provides intra-ocular distances based on 5 measurements, however ideally one would benefit from having raw data (time of flight), e.g. using a custom-made OCT

Method: Reverse Ray-Tracing

Reverse ray-tracing is based on reciprocity of light. An aberrated wavefront emerging from the eye is corrected by an imaginary phase plate conjugated to the pupil, as a result we get a flat wavefront. Now tracing rays into the eye model through the phase plate (pre-aberrating the beam) and minimizing the sport size on the retina is the basis for eye reconstruction

Alexander Goncharov, Maciej Nowakowski, Matthew Sheehan, and Chris Dainty, "Reconstruction of the optical system of the human eye with reverse ray-tracing," Opt. Express 16, 1692-1703 (2008).

"Inverse Optical Design" – US Patent 7832864

Method: Wavefront Tomography

Wavefront tomography uses several wavefronts measured along different directions in the eye, thus one gets more constrains for reconstructing internal structures. Reverse ray-tracing is applied *simultaneously* for all selected directions (field points)

Modeling the Eye: Adaptive GRIN Lens

Adaptive gradient index lens is defined by geometry of its external surfaces, it can operate at wide angles and is suitable for eye & lens reconstruction *in vivo* or *in vitro* We use it as a starting design for optimization to reach a patient-specific eye model

* Gradient index is defined as a function of the radial distance *r* and the lens thickness *z*:

 $n(r,z) = 1.361 - 0.002149r^{2} - 0.0000106r^{4} + 0.049467z - 0.01596z^{2} + 0.0001715z^{3} + 0.00141z^{4}$

Alexander Goncharov and Chris Dainty, "Wide-field schematic eye models with gradient-index lens," J. Opt. Soc. Am. A 24, 2157-2174 (2007)

Modeling the Eye: Inverse Optical Design

We uses the optical design software Zemax for reverse ray-tracing and optimization of the eye model, so that it predicts well wavefront aberrations at different points in the visual field

Personalized Eye Model

Radius $r_1 = 7.78$	Conic constant $c_1 = -0.1$	Thickness	Refractive index	Medium
	0.1	$d_1 = 0.56$	$n_1 = 1.3721$	cornea
$r_2 = 6.52^*$	$c_2 = -0.1$	$d_2 = 2.56$	$n_2 = 1.33215$	aqueous
$r_3 = 11.2$	$c_3 = -1$	$d_3 = 3.79$	$n_3 = 1.3651.41^{**}$	lens
$r_4 = -6.4$	$c_4 = -0.12$	$d_{4} = 16.66$	$n_{\star} = 1.33224$	vitreous
$r_5 = -11.5$	$c_{5} = 1$	- 4	4	

*All variables are shown in **bold**

**Gradient index is defined as a function of the radial distance r and the lens thickness z

 $n(r,z) = 1.365 - 0.002135r^2 - 0.000002r^4 + 0.04777z - 0.079748z^2 - 0.003868z^3 + 0.000698z^4$

Future for Improved Cataract Surgery

- Personalised eye modeling
- Customised intra-ocular lenses and/or post-operative "trimming".

Optically perfect imaging

Acknowledgements

Special thanks to:

Eugenie Dalimier, Alexander Goncharov, Maciej Nowakowski and Matt Sheehan

Science Foundation Ireland

