

International Conference on Advanced Optical Technologies University of Erlangen-Nürnberg, March 13th – 15th 2019

Free-space quantum key distribution at a wavelength of 10.6 µm using continuous variables

 Kevin Jaksch^{1,2}, Imran Khan^{1,2}, Tobias Frank^{1,2}, Birgit Stiller³, Christoph Marquardt^{1,2}, Gerd Leuchs^{1,2,4}
¹Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany ²IOIP, University of Erlangen-Nuernberg, Staudtstraße 7/B2, 91058 Erlangen, Germany ³IPOS, School of Physics, University of Sydney, NSW 2006, Australia ⁴Department of Physics, University of Ottawa, 25 Templeton, Ottawa, ON, Canada kevin,jaksch@mpl.mpg.de

When light is transmitted through the atmosphere, it is scattered by atmospheric particles. This limitation of free-space optical channels can be counteracted by using a wavelength longer than the atmospheric particle size, where these losses are heavily reduced. Here, we present a free-space quantum key distribution system at a wavelength of 10.6 μ m using continuous variables. We investigate the performance of the available technology regarding quantum-limited measurements and study the feasibility of this wavelength for atmospheric quantum communication.